Reminder on Atomic Units

https://en.wikipedia.org/wiki/Natural_units#Summary_table

Pseudopotentials

http://www.pseudo-dojo.org/

Analytically integrable cases

https://en.wikipedia.org/wiki/List_of_quantum-mechanical_systems_with_analytical_solutions

Databases

AFlow from Duke University

https://aflow.org/prototype-encyclopedia/space_groups.html

Topological materials database

https://www.topologicalquantumchemistry.com

https://materialsproject.org/

2D materials databases

https://www.materialscloud.org/discover/2dstructures/

https://cmrdb.fysik.dtu.dk/

JARVIS database

https://jarvis.nist.gov/

Organic materials search database

https://www.diadem-project.eu/

Microscopy data bank

https://www.ebi.ac.uk/pdbe/emdb/

Thermodynamical quantities computed from DFT

Finite Te-DFT database of prof. Zhigilei

Benasque School of TDDFT – September 2016/2018

Link to the website: http://benasque.org/2016tddft/

DFT

  1. EKU Gross, Ground state DFT.

Many-body theory & Feynmann diagrams

  1. R. van Leeuween, Introduction to many-body theory
  2. R. van Leeuween, Feynmann diagrams and the Green’s function
  3. I. Tokatly: Many-body perturbation theory: introduction to diagrammatics
  4. I. Tokatly, Bethe-Salpeter equation, electron-hole excitations and optical spectra

TDDFT

  1. EKU Gross, Fundamentals of TDDFT
  2. N. Maitra, Memory in TDDFT: History and Initial-State Dependence
  3. N. Maitra, Beyond standard approximations in linear response: double excitation and charge transfer excitations
  4. 2016+2018: D. A. Strubbe, Non-linear response properties: phenomenology and calculation with TDDFT
  5. C. A. Ullrich: TDDFT for extended systems: Plasmons
  6. C. A. Ullrich: TDDFT for extended systems: Excitons
  7. A. Castro: Quantum optimal control theory for electron dynamics

GW & diagrammatics

  1. R. van Leeuwen, Linear response and examples
  2. D. A. Strubbe, Tutorial: Octopus + BerkeleyGW
  3. F. H. da Jornada, D. A. Strubbe: Practical BSE calculations with BerkeleyGW + Octopus
  4. I. Tavernelli, TDDFT for excited states dynamics.
  5. I. Tavernelli, TDDFT in mixed quantum-classical dynamics: Non-adiabatic excited state dynamics

Micro-macro connection

  1. 2018: N. Tancogne-Dejean: Microscopic-macroscopic connection
  2. 2018: R. Requist, Geometric phase formula for the macroscopic polarization

Berry phase, Potential Energy Surfaces (PES), Topological invariants

  1. 2016: J. Jornet-Somoza, Applied TDDFT: a Chemist’s perspective
  2. 2016: J. Jornet-Somoza, Applied TDDFT: a biochemist’s perspective
  3. 2018: Ryan Requist, Introduction to Molecular Geometric Phase
  4. 2018: EKU Gross, Potential energy surfaces and Berry phases beyond the Born-Oppenheimer approximation
  5. 2018: R. Requist, Topological invariants and topological insulators

FHI aims “Hands-on” tutorials

FHI-aims 2015 – Tutorial 2 – Franz Knuth, Lydia Nemec, Björn Bieniek, Björn Lange, and William Huhn

  1. Generation and visualization of bulk structures
  2. Energy convergence tests
  3. Phase stability and cohesive properties
  4. Unit cell relaxation
  5. Electronic band structure & density of states
  6. Effects of spin-orbit coupling on a single atom
  7. Effects of spin-orbit coupling on band structures
  8. Electronic structure of crystal surfaces
  9. Relaxing surface structures

FHI-aims 2014 – Tutorial 3 – Jan Hermann and Alexandre Tkatchenko

  1. Single benzene molecule
  2. Stacked interaction
  3. Investigation of the benzene dimer (photo-emission)
  4. Benzene crystal
  5. Benzene chain
  6. Benzene chain (revised)
  7. Graphene and benzene
  8. Graphene bilayer
  9. Graphene multilayer

FHI-aims 2014 – Tutorial 4 – Noa Marom

  1. TiO2 cluster and Potentiel Energy Surfaces (PES)

FHI-aims 2014/2015 – Tutorial 5 – Mariana Rossi and Luca M. Ghiringhelli: Potential energy surfaces with molecular dynamics (ex: H5O2)

FHI-aims 2014/2015 – Tutorial 6 – Christian Carbogno and Manuel Schöttler – Phonons, lattice expansion, band-gap renormalization

  1. Harmonic vibrations in solids
  2. Lattice expansion in the quasi-harmonic approximation
  3. Electron-phonon coupling: band gap renormalization
    1. Role of the lattice expansion
    2. The role of the atomic motion

FHI-aims 2014/2015 – Tutorial 7 – Modeling of configurational energetics – Volker Blum, Gus Hart, Norina Richter

  1. First-neightbour Ising model
  2. Generalized Ising model (“Cluster expansion”)
  3. Correlations by hand
  4. Cluster Expansion by hand
  5. Problem I: simplified CE calculation
  6. Problem II: A 2D cluster expansion fit by hand
  7. Problem III: A simple fit with actual Ni-Al data (2D example)
  8. Problem III (2015): Formation enthalpy
  9. Problem IV (2015): Cluster expansion (Ag-Pd)
  10. Problem V: Order-disorder transitions (Ni-Al, Ag-Pd)

FHI-aims 2014/2015 – Tutorial 8 – Theoretical Spectroscopy and Electronic Excitations – Arvid Ihrig, Fabio Caruso and Patrick Rinke

GW approximation, Green function method, self-energy, G0W0 approximation.

Quantum, HPC and scientific culture

Quantum community

HPC community

Scientific culture