Reminder on Atomic Units
https://en.wikipedia.org/wiki/Natural_units#Summary_table
Pseudopotentials
Analytically integrable cases
https://en.wikipedia.org/wiki/List_of_quantum-mechanical_systems_with_analytical_solutions
Databases
AFlow from Duke University
https://aflow.org/prototype-encyclopedia/space_groups.html
Topological materials database
https://www.topologicalquantumchemistry.com
https://materialsproject.org/
2D materials databases
https://www.materialscloud.org/discover/2dstructures/
JARVIS database
Organic materials search database
https://www.diadem-project.eu/
Microscopy data bank
https://www.ebi.ac.uk/pdbe/emdb/
Thermodynamical quantities computed from DFT
Finite Te-DFT database of prof. Zhigilei
Benasque School of TDDFT – September 2016/2018
Link to the website: http://benasque.org/2016tddft/
DFT
- EKU Gross, Ground state DFT.
Many-body theory & Feynmann diagrams
- R. van Leeuween, Introduction to many-body theory
- R. van Leeuween, Feynmann diagrams and the Green’s function
- I. Tokatly: Many-body perturbation theory: introduction to diagrammatics
- I. Tokatly, Bethe-Salpeter equation, electron-hole excitations and optical spectra
TDDFT
- EKU Gross, Fundamentals of TDDFT
- N. Maitra, Memory in TDDFT: History and Initial-State Dependence
- N. Maitra, Beyond standard approximations in linear response: double excitation and charge transfer excitations
- 2016+2018: D. A. Strubbe, Non-linear response properties: phenomenology and calculation with TDDFT
- C. A. Ullrich: TDDFT for extended systems: Plasmons
- C. A. Ullrich: TDDFT for extended systems: Excitons
- A. Castro: Quantum optimal control theory for electron dynamics
GW & diagrammatics
- R. van Leeuwen, Linear response and examples
- D. A. Strubbe, Tutorial: Octopus + BerkeleyGW
- F. H. da Jornada, D. A. Strubbe: Practical BSE calculations with BerkeleyGW + Octopus
- I. Tavernelli, TDDFT for excited states dynamics.
- I. Tavernelli, TDDFT in mixed quantum-classical dynamics: Non-adiabatic excited state dynamics
Micro-macro connection
- 2018: N. Tancogne-Dejean: Microscopic-macroscopic connection
- 2018: R. Requist, Geometric phase formula for the macroscopic polarization
Berry phase, Potential Energy Surfaces (PES), Topological invariants
- 2016: J. Jornet-Somoza, Applied TDDFT: a Chemist’s perspective
- 2016: J. Jornet-Somoza, Applied TDDFT: a biochemist’s perspective
- 2018: Ryan Requist, Introduction to Molecular Geometric Phase
- 2018: EKU Gross, Potential energy surfaces and Berry phases beyond the Born-Oppenheimer approximation
- 2018: R. Requist, Topological invariants and topological insulators
FHI aims “Hands-on” tutorials
FHI-aims 2015 – Tutorial 2 – Franz Knuth, Lydia Nemec, Björn Bieniek, Björn Lange, and William Huhn
- Generation and visualization of bulk structures
- Energy convergence tests
- Phase stability and cohesive properties
- Unit cell relaxation
- Electronic band structure & density of states
- Effects of spin-orbit coupling on a single atom
- Effects of spin-orbit coupling on band structures
- Electronic structure of crystal surfaces
- Relaxing surface structures
FHI-aims 2014 – Tutorial 3 – Jan Hermann and Alexandre Tkatchenko
- Single benzene molecule
- Stacked interaction
- Investigation of the benzene dimer (photo-emission)
- Benzene crystal
- Benzene chain
- Benzene chain (revised)
- Graphene and benzene
- Graphene bilayer
- Graphene multilayer
FHI-aims 2014 – Tutorial 4 – Noa Marom
- TiO2 cluster and Potentiel Energy Surfaces (PES)
FHI-aims 2014/2015 – Tutorial 5 – Mariana Rossi and Luca M. Ghiringhelli: Potential energy surfaces with molecular dynamics (ex: H5O2)
FHI-aims 2014/2015 – Tutorial 6 – Christian Carbogno and Manuel Schöttler – Phonons, lattice expansion, band-gap renormalization
- Harmonic vibrations in solids
- Lattice expansion in the quasi-harmonic approximation
- Electron-phonon coupling: band gap renormalization
- Role of the lattice expansion
- The role of the atomic motion
FHI-aims 2014/2015 – Tutorial 7 – Modeling of configurational energetics – Volker Blum, Gus Hart, Norina Richter
- First-neightbour Ising model
- Generalized Ising model (“Cluster expansion”)
- Correlations by hand
- Cluster Expansion by hand
- Problem I: simplified CE calculation
- Problem II: A 2D cluster expansion fit by hand
- Problem III: A simple fit with actual Ni-Al data (2D example)
- Problem III (2015): Formation enthalpy
- Problem IV (2015): Cluster expansion (Ag-Pd)
- Problem V: Order-disorder transitions (Ni-Al, Ag-Pd)
FHI-aims 2014/2015 – Tutorial 8 – Theoretical Spectroscopy and Electronic Excitations – Arvid Ihrig, Fabio Caruso and Patrick Rinke
GW approximation, Green function method, self-energy, G0W0 approximation.
Quantum, HPC and scientific culture
Quantum community
- Quanta Magazine
- Symmetry Magazine
- European Physical Society (EPS) Journal
- Psi-K network
- VISTA seminars of quantum mechanics
HPC community
Scientific culture